National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Host-microbiota, pro-inflammatory immunity and physiological senescence in wild birds
Těšický, Martin
Triggered by microbial ligands, inflammation serves as a "double-edged sword" to fight infections on the one hand, but on the other hand causing tissue damage due to oxidative stress if it is dysregulated. For example, chronic inflammation can contribute to inflammaging, which is now widely regarded as one of the causes of ageing. In my interdisciplinary dissertation, my colleagues and I investigated three interrelated aspects of inflammation, using an evolutionary framework and various free-living birds as models: (1) ecological and evolutionary determinants of gut microbiota (GM) composition and diversity, a driver of wild bird immunity, (2) diversity in immune genes affecting inflammatory responses in wild birds and (3) inflammation-related physiological senescence in a free-living passerine bird, the great tit (Parus major). Firstly, using 16S rRNA gene metabarcoding, we revealed high intra- and interspecific variation in passerine gut microbiota (GM) dominated by the major phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Although in mammals GM depends strongly on host phylogeny and diet, in birds we found only moderate effects of phylogeny and very limited effects of host geography and ecology on GM composition. While microbiota diverged between the upper and lower...
Host-microbiota, pro-inflammatory immunity and physiological senescence in wild birds
Těšický, Martin ; Vinkler, Michal (advisor) ; Tschirren, Barbara (referee) ; Štěpánek, Ondřej (referee)
Triggered by microbial ligands, inflammation serves as a "double-edged sword" to fight infections on the one hand, but on the other hand causing tissue damage due to oxidative stress if it is dysregulated. For example, chronic inflammation can contribute to inflammaging, which is now widely regarded as one of the causes of ageing. In my interdisciplinary dissertation, my colleagues and I investigated three interrelated aspects of inflammation, using an evolutionary framework and various free-living birds as models: (1) ecological and evolutionary determinants of gut microbiota (GM) composition and diversity, a driver of wild bird immunity, (2) diversity in immune genes affecting inflammatory responses in wild birds and (3) inflammation-related physiological senescence in a free-living passerine bird, the great tit (Parus major). Firstly, using 16S rRNA gene metabarcoding, we revealed high intra- and interspecific variation in passerine gut microbiota (GM) dominated by the major phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Although in mammals GM depends strongly on host phylogeny and diet, in birds we found only moderate effects of phylogeny and very limited effects of host geography and ecology on GM composition. While microbiota diverged between the upper and lower...
In Vitro Selection of Aptamers for Methionine Sulfoxide
Jureček, Matěj ; Míšek, Jiří (advisor) ; Bařinka, Cyril (referee)
Oxidation of methionine to methionine sulfoxide in proteins is considered one of important post-translational modifications of proteins. This modification can activate and also inhibit functions of many proteins and it is a part of regulation mechanisms of various (patho)physiological processes. For further research of the effects of methionine oxidation in proteins it would be very helpful to find its bioindicator. So far however, there has not been found any such antibody, nor any of its alternatives. This thesis was concerned with the search of ssDNA aptamer specific for methionine sulfoxide by the method of in vitro selection (SELEX). Several conditions for in vitro selection of methionine sulfoxide were tested in this diploma thesis. None of them led to the enrichment of the starting oligonucleotide pool and no selective aptamer for methionine sulfoxide has been found. Such results don't necessarily point to the impossibility of finding such aptamer, but the conventional methods used in this thesis weren't suitable for this task. In a control in vitro selection there has been found an enriched ssDNA pool for sulforhodamine B as a ligand. Sequencing of clones of this enriched pool has shown oligonucleotides with G-rich sequences, which is typical for already published aptamers for sulforhodamine B.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.